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An extended Korteweg–de Vries (KdV) equation is derived that describes the evolution
and propagation of long interfacial gravity waves in the presence of a strong, space–
time varying background. Provision is made in the derivation for a spatially varying
lower depth so that some topographic effects can also be included. The extended
KdV model is applied to some simple scenarios in basins of constant and varying
depths, using approximate expressions for the variable coefficients derived for the case
when the background field is composed of a moderate-amplitude ultra-long wave. The
model shows that energy can be transferred either to or from the evolving wave packet
depending on the relative phases of the evolving waves and the background variation.
Comparison of the model with laboratory experiments confirms its applicability and
usefulness in examining the evolution of weakly nonlinear waves in natural systems
where the background state is rarely uniform or steady.

1. Introduction
Internal solitary waves are common features in lakes, fjords and coastal oceans

(Grimshaw 1998). In the coastal ocean and in fjords they are generated by the
steepening of the internal tide (e.g. Holloway 1987) and by tidal flows over sills (e.g.
Farmer & Smith 1978; Apel et al. 1985). In lakes internal solitary waves evolve from
the steepening of some initial large-scale internal wave (e.g. Thorpe, Hall & Crofts
1972; Hunkins & Fliegel 1973; Farmer 1978) and from the interaction of large-scale
internal waves with topography (e.g. Thorpe et al. 1996).

In all these environments internal solitary waves encounter sloping boundaries
where they shoal and break, dissipating most of their energy. In this way internal
solitary waves play an important role in energy dissipation and in driving mixing of
nutrients, oxygen and other biological agents. Laboratory experiments have shown
that the resultant dissipation and mixing is dependent on the size and shape of the
incident waves and on of the slope of the boundary (Helfrich 1992; Michallet &
Ivey 1999). It is therefore of significant practical importance to be able to model the
evolution and propagation of internal solitary waves.

Another feature of lakes, fjords and coastal oceans is they are rarely quiescent;
rather there is generally some background shear due to a large-scale flow. This
background shear is often periodic, due to tidal forcing or, especially in the case
of lakes, a large-scale internal wave. Hence, any long wave or solitary wave packet
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necessarily evolves and propagates through some large-scale field which is periodic in
both space and time.

The simplest model of the evolution and propagation of solitary waves is the
Korteweg–de Vries (KdV) equation (for a review see Miles 1981). The KdV equation
has been modified to include the effects of weak, steady background shear (Lee &
Beardsley 1974; Maslowe & Redekopp 1980), slowly varying topography (Djordjevic
& Redekopp 1978) and a slowly varying current (Zhou & Grimshaw 1989), and slowly
varying stratification and depth (e.g. Pelinovskiy, Stepanyants & Talipova 1995). In
many instances, however, the background is strongly varying in space and time and
none of these approaches is completely satisfactory.

This work focuses on the evolution of a packet of interfacial solitary waves
in the presence of a prescribed, strong, space–time varying background. It was
largely motivated by the laboratory experiments of Horn, Imberger & Ivey (1999),
investigating the degeneration of internal standing waves in lakes. In each experiment
a standing wave was generated from an initially tilted interface, representing the tilted
thermocline in a lake. In most cases the initial standing wave generated by the tilted
interface steepened and evolved into a packet of solitary waves, although some energy
remained in a residual larger scale. The residual large-scale wave caused the interface
on which the solitary wave packet propagated to heave up and down and, in the
context of the analysis that follows, it represents the prescribed, strong, space–time
varying background through which the solitary wave packet evolved and propagated.
The analysis is carried forward for the simple case of a two-layer stratification, as
used in the experimental configuration, since the first vertical mode waves are the
strongest signal observed in most lakes and since this simplifies the analytical details.
The problem is treated as an initial value problem for internal wave motion in a
semi-infinite channel where the background state is a large-scale standing wave and
a locally steep distortion of the interface is released at a prescribed phase of the
standing wave. What is of particular interest is how the packet evolution proceeds
as it experiences space–time variations in the magnitude of the leading-order phase
speed, the strength of the nonlinear steepening or rarefaction, and the strength of
the leading dispersive effect. That is, how the packet evolves where the leading-order,
linear evolution proceeds along an accelerating–decelerating characteristic.

After formulating the problem and deriving the evolution equations, we present a
number of applications of the model to illustrate the evolution of a packet of solitary
waves in the presence of a background large-scale wave in basins with constant and
varying depths. Descriptions of the inverse scattering problem for the tilted interface
initial condition and of the standing wave in a basin of variable depth are provided
in the Appendices.

2. Problem formulation
The analysis for long-wave evolution in a space–time varying background is set in

the context of a two-layer stratification. We suppose that a layer of fluid with depth
h1 and density ρ1 overlays a heavier layer of depth h2 and density ρ2 > ρ1. We assume
that the fluids are immiscible and that the motion is inviscid. The two-layer model
affords a specific context where the varying background state can be both easily
visualized and described analytically. The model also provides a good first-order
approximation of the lowest vertical eigenmode for realistic environments in stratified
lakes (in which the thermocline is usually thin compared with the total depth), as
well as the simplest laboratory model in which the theoretical results can be tested.
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It was, in fact, laboratory experiments using a two-layer stratification that originally
motivated the analysis presented here.

The analysis is presented entirely in dimensional form so that dimensional con-
sistency and familiar groupings of terms are easily recognized. We assume that the
typical wavelength for the local waves (i.e. wave motions superimposed on the large-
scale inhomogeneous field) is long compared to the total depth h1 +h2 so that shallow
water theory applies in both layers. A non-dimensional amplitude parameter ε is
then introduced which measures the amplitude of long waves (relative to the upper-
layer depth h1) evolving on the interface which experiences a large-scale, space–time
displacement as part of the background field. Denoting the vertical (or wave-guide)
coordinate as z, the horizontal (or propagation) coordinate as x, and the (fast) time
by t, we introduce the slow space and time scales (X,T ) defined by

(X,T ) = ε3/2(x, t). (2.1)

The terms ‘long’ and ‘slow’ should be thought of in reference to the smallest layer
depth and the time to travel a distance equal to this depth with the limiting, long-wave
phase speed. The scale T = ε3/2t is the familiar time scale for weakly nonlinear, weakly
dispersive evolution in systems with a finite limiting phase speed (Drazin & Johnson
1989; Johnson 1997). We assume here that the background field also varies on these
scales, including the depth of the lower layer so that h2 = h2(X). These are the fastest
scales allowable for the inhomogeneous background field if nonlinear and dispersive
effects are to contribute to the local wave evolution. If the background field varies
on slower scales, the local evolution is described by the usual KdV theory modulated
by the varying background. The present choice of scales for the background thus
considers the case where the local wave evolution is strongly coupled to the varying
background field; local wave evolution is equally influenced by nonlinear steepening,
wave dispersion, the background shear and the changing depth.

Since the local wave evolution occurs in the presence of a unit-order variation of
the background, the usual (cf. Johnson 1997) characteristic variable θ used to measure
time (or distance) relative to the leading-order motion along the linear characteristic
(assumed here to define wave propagation to the right) is now written as

θ =
s(X,T )

ε
− ε1/2t, (2.2)

where

s(X,T ) =

∫ X dX ′

c (X ′, T )
. (2.3)

In this multiple scales approach, the evolution along the rightward characteristic
and occurring in (x, z, t) is transformed to the extended set of independent variables
(θ,X, z, T ). The situation in mind here, and which we seek to describe in terms of
the indicated scaled coordinates, is illustrated in figure 1 where the physical model
and an instantaneous linear characteristic are sketched. The characteristic trajectory
experiences an order-one variation on the slow scales (X,T ) as determined by the
underlying motion of the background state. The dependence of c, and therefore
s, on both (X,T ) is essential to the present objectives and represents the main
extension to KdV theory presented here. Previous theories (cf. Grimshaw 1981,
1998) have exclusively considered spatial inhomogeneities, or stated in another way,
space–time variations where the temporal inhomogeneity was slower than the spatial
inhomogeneity.

As already noted, the analysis is carried forward in terms of dimensional variables
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Figure 1. Sketch of (a) two-layer model with slow space–time-varying ultra-long wave and variable
topography, and (b) the linear characteristic trajectory in the presence of the varying background.

using the dimensionless amplitude parameter ε as the asymptotic order parameter.
The dimensional velocities, pressure, and interface displacement, denoted by (̃ ), are
then defined as follows:

ũ(x, z, t) = U(X, z, T ) + εu(θ,X, z, T ; ε),

w̃(x, z, t) = ε3/2W (X, z, T ) + ε3/2w(θ,X, z, T ; ε),

p̃(x, z, t) = P (X, z, T ) + εp(θ,X, z, T ; ε),

ζ̃(x, t) = N(X,T ) + εζ(θ,X, T ; ε).

 (2.4)

The first set of variables on the right-hand side of each expression represents the
space–time varying background which can be thought of as the field induced by an
ultra-long wave on the interface (e.g. a large-scale seiche motion upon which local
long-wave packets are evolving). The scaling for the vertical velocity W (X, z, T ) is
consistent with the equation for conservation of mass for the ultra-long wave. The
second term in each expression in (2.4) describes the field associated with any local
wave evolution and its scaling is consistent with that for weakly nonlinear, weakly
dispersive motion of a long wave with amplitude 0 < ε� 1.

In the partitioning of the fields in (2.4) we assume that the ultra-long wave field
satisfies the equations of motion in the absence of any local wave evolution. This
approximation ignores any loss of energy by the ultra-long wave background as the
local field evolves; that is, only a one-way coupling exists by which the background
field influences the local evolution and the local evolution does not modify the ultra-
long wave. This is admittedly a short-coming of the present theory. However, the
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analysis based on this ansatz does provide a means of assessing the effect of a well-
defined dynamic straining and advection on the evolution of a solitary wave or an
evolving long-wave packet.

The motion of the background plus any local evolving wave packet is described by
the equations for a inviscid, incompressible fluid:

ũx + w̃z = 0,

ũt + ũũx + w̃ũz +
1

ρ
p̃x = 0,

w̃t + ũw̃x + w̃w̃z +
1

ρ
p̃z = 0.


(2.5)

The pressure p̃ represents the departure of the local pressure from that of the
hydrostatically balanced state where the interface is quiescent and at its equilibrium
level. The dynamics in either layer must satisfy the kinematic constraint

w̃ = ζ̃t + ũζ̃x at z = ζ̃ ± 0, (2.6)

relating the dynamic fields to the interface (isopycnal) displacement. We assume z = 0
represents the equilibrium level of the interface in the quiescent state. In the inviscid
limit, and with immiscible fluids above and below the interface, we also have the
normal stress matching condition

g(ρ2 − ρ1)ζ̃ + p̃1 − p̃2 = 0 at z = ζ̃, (2.7)

where subscripts 1 and 2 denote, respectively, variables in the upper and lower
fluid layers. Employing the ansatz associated with the partitioning of the dependent
variables as specified in (2.4), the background field in both layers is described by the
following system:

UX +Wz = 0,

UT +UUX +WUz − 1

ρ
PX = 0,

1

ρ
Pz + ε3 {WT +UWX +WWz} = 0,

W1,2 = NT +U1,2NX at z = N(X,T ),

g(ρ2 − ρ1)N + P1 − P2 = 0 at z = N(X,T ).


(2.8)

With this formulation the motion of the local wave field defined by the second terms
in (2.4) is uniquely specified and is intimately connected to the space–time-varying
background.

In what follows we impose the boundary conditions of vanishing normal compo-
nents of velocity along the level boundary z = h1 for the top layer and z = h2(X)
for the lower layer. The inclusion of topographic effects is straightforward using the
present scaling and formulation. To this end, and since we require the ultra-long-
wave background field to satisfy the boundary conditions separately, we impose the
conditions

W1 = w1 = 0 at z = h1,

W2 = −U2h
′
2(X), w2 = −εu2h

′
2(X) at z = h2(X).

 (2.9)
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3. Derivation of the evolution equation
The evolution of local packets of long waves in the presence of a background

field (U,W ) described by (2.8) is described by means of an asymptotic analysis for
0 < ε � 1. The analysis presented here parallels standard procedures for derivation
of the KdV equation, but some important new effects emerge in this inhomogeneous
case. Nevertheless, a number of the algebraic details will be omitted and only some
of the main intermediate results will be noted.

The dependent variables u, w, ζ and p defined in (2.4) are all expanded in terms
of perturbation series. For example, the local interface distortion relative to the
background displacement N(X,T ) is expressed as

ζ(θ,X, T ; ε) = ζ(1) (θ,X, T ) + εζ(2) (θ,X, T ) + · · · . (3.1)

In this representation, the velocity components and the pressure appearing in the
kinematic condition (2.6) and matching condition (2.7) are expanded in a Taylor
series about the equilibrium interface position z = N(X,T ). That is, we linearize the
interface conditions about the background or ultra-long-wave position.

The equations of motion for the local wave field are obtained by rewriting (2.5) in
terms of the scaled coordinates defined in (2.1), (2.2) and (2.3), substituting (2.4) into
(2.5), and employing the description of the ultra-long-wave field given in (2.8). Then,
expansions of the form (3.1) for the all field variables are employed in the resulting
equations. The leading-order set of equations obtained by applying the limit process
ε→ 0 yield the following solutions for the field variables:

upper layer

u
(1)
1 = V1(θ,X, T ) = −C −U1

h1 −N ζ(1), (3.2a)

w(1) = −1

c
V1θ (z − h1), (3.2b)

p
(1)
1 = ρ1(C −U1)V1. (3.2c)

lower layer

u
(1)
2 = V2(θ,X, T ) =

C −U2

h2 +N
ζ(1), (3.3a)

w
(1)
2 = −1

c
V2θ(z + h2), (3.3b)

p
(1)
2 = ρ2(C −U2)V2. (3.3c)

The variable C appearing in these solutions is defined as

C(X,T ) = c (1− sT ) = c(X,T )

{
1− ∂

∂T

∫ X dX ′

c (X ′, T )

}
, (3.4)

where c(X,T ), the long-wave phase speed, is the eigenvalue of the leading-order linear
system which varies slowly in space and time in accordance with the background state.
One may note that the expression for C(X,T ) is related to the characteristic phase
function θ(x, t) in (2.2), C = −θt/θx, but we prefer to present the analysis which
follows in terms of the two related functions c(X,T ) and C(X,T ).

The eigenvalue relation is obtained by using (3.2) and (3.3) in the leading-order
pressure matching condition (2.7). Substituting into the resulting matching condition
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yields the result

ρ1

(C −U1)
2

h1 −N + ρ2

(C −U2)
2

h2 +N
− g (ρ2 − ρ1) = 0. (3.5)

The analytic form of this expression is very familiar as the long-wave limit of the
dispersion relation for the Kelvin–Helmholtz instability problem (in the absence of
surface tension effects) insofar as the variable C(X,T ) is concerned (Drazin & Reid
1981). There is, however, a fundamental difference in that (3.5) is not a quadratic
polynomial for the eigenvalue, but an integro-differential equation for the phase
speed c(X,T ), as is seen from (3.4). It is the solution of this equation for a prescribed
background state that determines the trajectory of the linear characteristic for local
wave evolution which was sketched in figure 1. When U1, U2, N and h2 are constant,
sT = 0 and we recover the familiar quadratic relation for the phase speed c.

Carrying the asymptotic expansion forward to second order, a compatability con-
dition emerges describing the evolution of the leading-order displacement function
ζ(1)(θ,X, T ). As the analytical procedures are well established, the algebraic steps are
suppressed and the detailed form of the modified KdV equation describing the evo-
lution of the local interface displacement ζ(1) in the presence of the inhomogeneous,
non-stationary background is given in Appendix A as it emerges in the O(ε) closure.
The equation is expressed here in the abbreviated form

ζ
(1)
T + Cζ

(1)
X + n(X,T )ζ(1) +

1

c
α(X,T )ζ(1)ζ

(1)
θ +

1

c3
β(X,T )ζ(1)

θθθ = 0. (3.6)

The more lengthy expression appearing in equation (A 1) for the index-of-refraction
term n(X,T ) can be written compactly as

n(X,T ) = CX +
1

2D
(DT + CDX) , (3.7)

where the quantity D(X,T ) has the definition

D(X,T ) = ρ1

C −U1

h1 −N + ρ2

C −U2

h2 +N
. (3.8)

We note that for the special limit of variable depth h2(X), but with U1 = U2 = N = 0,
the index of refraction assumes the form

n(X) = 1
2
CX = 1

2
cX =

c

4

ρ2h1

ρ1h2 + ρ2h1

h′2
h2

. (3.9)

This limiting form for long-wave propagation in a spatially inhomogeneous medium,
where the inhomogeneity derives from a spatially varying wave-guide dimension, is
consistent with results obtained by Kakutani (1971) and Johnson (1973) for free-
surface gravity waves and by Djordjevic & Redekopp (1978) for internal waves in a
two-layer system. For the limiting case just described, where the index of refraction is
independent of time, the dependence of ζ(1) on the slow time scale T = ε3/2t vanishes
and ζ(1) = ζ(1)(θ,X) and C(X) = c(X). Equation (3.6) then reduces to the form given
in Djordjevic & Redekopp (1978).

It is convenient for laboratory comparisons to have the evolution equation recast
in terms of laboratory coordinates and the unscaled interface displacement. In terms
of these original variables (3.6) becomes

ζt + C(x, t)ζx + n(x, t)ζ + α(x, t)ζζx + β(x, t)ζxxx = 0. (3.10)

It is worth noting that the solution of (3.10) does not require explicit computation of
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the phase speed c(x, t). The speed function C(x, t), which can be computed directly
from (3.5), is now related to c(x, t) by

C(x, t) = c(x, t) (1− st) = c(x, t)

{
1− ∂

∂t

∫ x dx′

c (x′, t)

}
. (3.11)

The index of refraction, however, when written explicitly in terms of the field variables
can be related to spatial or temporal gradients of the base state separately as follows:

n(x, t) = n(t) + n(x), (3.12a)

where

n(t) =
ρ1ρ2 (U1 −U2) (U2t −U1t)

2D2 (h1 −N) (h2 +N)
+

{
ρ1

C −U1

(h1 −N)2
− ρ2

C −U2

(h2 +N)2

+
ρ1ρ2 (U1 −U2)

D (h1 −N) (h2 +N)

[
C −U1

h1 −N +
C −U2

h2 +N

]}
Nt

4D
(3.12b)

and

n(x) =
ρ1ρ2 (U1 −U2) (U2x −U1x)

2D2 (h1 −N) (h2 +N)
+

1

D

{
ρ1

C −U1

h1 −N U1x + ρ2

C −U2

h2 +N
U2x

}
+

{
ρ2

(C −U2) (C − 2U2)

(h2 +N)2
− ρ1

(C −U1) (C − 2U1)

(h1 −N)2

+
ρ1ρ2C (U1 −U2)

D (h1 −N) (h2 +N)

[
C −U1

h1 −N +
C −U2

h2 +N

]}
Nx

4D

+
ρ2

4D

C −U2

(h2 +N)2

{
(C − 2U2)− ρ1C (U1 −U2)

D (h1 −N)

}
h′2(x). (3.12c)

Each term is proportional to the respective gradient of the inhomogeneous back-
ground or ultra-long-wave field.

To further illuminate the implications of the variable-coefficient KdV equation
(3.10), we form an equation for an integral measure of the local ‘energy’ appropriate
for an initial value problem on the unbounded line. Multiplying (3.10) by ζ and
integrating over the infinite spatial domain yields

1

2

∂

∂t

∫ ∞
−∞
ζ2dx = −

∫ ∞
−∞

{(
n− 1

2
Cx
)
ζ2 − 1

3
αxζ

3 + 1
2
βx
[

3
2
ζ2
x −

(
ζ2
)
xx

]}
dx. (3.13)

The familiar conservation law for the standard KdV equation is recovered in the
limit of a homogeneous background state when n = Cx = αx = βx = 0. Since the
sign of the integrand on the right-hand side changes locally in space and time, this
particluar measure of the energy in a wave packet shows that the wave amplitude
will either increase or decrease locally as it propagates through a space–time-varying
background field. Also, since derivatives of the different coefficient functions appear
in the integrand on the right-hand side, energy transfer to or from the long wave will
depend crucially on the phase of the ultra-long-wave field. We point out that the first
term in the integral on the right-hand side vanishes for the special case represented
by (3.9). In the general case of an arbitrary inhomogeneous background field this
coefficient can be written in the compact form

n− Cx

2
=

1

2D
{Dt + (CD)x} , (3.14)

where D is defined in (3.8).
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The terms involving the nonlinear and dispersive coefficients α and β appearing
in the integral on the right-hand side of (3.13) are of higher order than the index-
of-refraction term when the integral is recast using the asymptotic expansion. When
these terms are neglected, for example in (3.6), an alternative energy density can be
defined leading to the relation

∂

∂T

∫ ∞
−∞
CDζ(1)2

dX =

∫ ∞
−∞
CTDζ

(1)2

dX. (3.15)

This expression is an extension of that given, for example, by Grimshaw (1998),
and reveals the special consequence of a non-stationary background state. If the
background is inhomogeneous, but stationary, one obtains the familiar conservation
of wave action flux.

4. Evolution in the presence of moderate inhomogeneity
The derivation of the evolution equation in the previous section was premised

on the existence of a unit-order, large-scale background wave field. The resulting
evolution equation (3.10), together with the eigenvalue relation defined by (3.5) and
(3.11), can be subsequently used as a basis for analysing the evolution of a long-wave
packet in the limit of a moderate-amplitude background state. To make the relative
strength of this state explicit, we introduce the dimensionless scale parameter δ where
we suppose that |N(x, t)| = O

(
δh1,2

)
and where 0 < ε � δ < 1. At the same time

we suppose that the large-scale velocity field U1,2 derives solely from the large-scale
interface displacement N(x, t). That is, we exclude the case where an imposed, order-
one, parallel shear flow exists in addition to the flow induced by the displacement
N(x, t). Hence, U1,2 will also be of order δ relative the phase speed of infinitesimal
waves propagating on the interface.

Formal development of the modified evolution problem for the limit case defined
above proceeds by defining the parameter expansions

c = c0 + δc1 + · · · ,
C = C (0) + δC (1) + · · · ,
N = δN(1) + δ2N(2) + · · · ,
U1,2 = δU

(1)
1,2 + δ2U

(2)
1,2 . . . .


(4.1)

Substitution of these expansions into (3.5) and (3.11) yields the relations

C (0)2

= c2
0 =

g (ρ2 − ρ1) h1h2

ρ1h2 + ρ2h1

, (4.2)

C (1) =
c0

2h1h2

ρ2h
2
1 − ρ1h

2
2

ρ1h2 + ρ2h1

N(1) +
ρ1h2U

(1)
1 + ρ2h1U

(1)
2

ρ1h2 + ρ2h1

. (4.3)

The first correction to the phase speed c1 requires solution of the integro-differential
equation

c1 + c0

∂

∂t

∫ X c1 (x′, t) dx′

c2
0 (x′)

= C (1)(x, t). (4.4)

However, and as pointed out earlier, the explicit solution for c1 is not required to
obtain the approximate form of the coefficients of (3.10) correct to O(δ) nor for the
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solution of the resulting limit of the evolution equation. Calculation of the coefficient
functions in (3.10) correct to O(δ), although a bit tedious, leads to the following
expressions:

n =
c0

4

ρ2h1

ρ1h2 + ρ2h1

h′2(x)

h2

+ δ

{
1

4

ρ1h
2
2 − ρ2h

2
1

ρ1h2 + ρ2h1

· N
(1)
t

h1h2

+
ρ1h2U

(1)
1x + ρ2h1U

(1)
2x

ρ1h2 + ρ2h1

+

[
1

2

ρ1h
2
2 − ρ2h

2
1

ρ1h2 + ρ2h1

N(1)

h1h2

− 2
ρ1h2

ρ1h2 + ρ2h1

· h2 − h1

h1h2

N(1) − ρ1h2U
(1)
1 + ρ2h1U

(1)
2

c0 (ρ1h2 + ρ2h1)

+2
ρ1h2

(
U

(1)
1 −U(1)

2

)
c0 (ρ1h2 + ρ2h1)

]
c0

4

ρ2h1

ρ1h2 + ρ2h1

h′2(x)

h2
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(4.7)

The foregoing expressions can be used in (3.10) to describe approximately the
evolution of a long internal wave in the presence of a moderate-amplitude ultra-long
wave. Retaining terms up to the level of approximation used in the expansions for
the coefficient functions given above, the wave motion is asymptotically correct to
O(δ2ε, ε2) where ε is the amplitude of the evolving long-wave packet and δ is the
amplitude of the background ultra-long-wave field. Insofar as (3.10) is an unscaled,
dimensional equation for the interface distortion ζ(x, t), and that δ was introduced
only to provide a systematic basis for the calculation of approximate forms for the
coefficients C, n, α, and β, the parameter δ can be simply combined with the first-
order functions N(1) and U(1)

1,2 to represent the available dimensional fields N(x, t) and
U1,2(x, t). These fields can then be used directly in computing C from (4.1), (4.2) and
(4.3) and n, α, and β from (4.5), (4.6) and (4.7). In this way the weakly nonlinear,
weakly dispersive evolution of a local long-wave packet in the presence of a space–
time varying background field of moderate amplitude is completely specified within
the order of approximation defined above.

5. Applications
5.1. Evolution in a basin of uniform depth

In this section we consider two specific applications of the model equation derived
here describing the evolution of long waves in the presence of a moderate-amplitude
ultra-long wave. To do this we solve (3.10) using a pseudospectral method similar to
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that described by Fornberg & Whitham (1978). The variable coefficients described by
(4.3), (4.5), (4.6) and (4.7) are calculated over the whole domain for each time step.

Case 1: Evolution of a depression of the interface
We first examine the evolution of a disturbance of the interface at the origin

as it propagates into a periodically varying background on a semi-infinite domain.
Such a situation arises when wind blows over a lake for a time shorter than T0/4,
where T0 = 2L/c0 is the period of the first horizontal mode internal wave (Spigel
& Imberger 1980), also referred to as the internal seiche. The applied wind stress
results in a depression of the thermocline at the downwind end of the lake and a
corresponding elevation at the upwind end. When the wind stress is removed, the
depression propagates as a long wave towards the centre of the lake. If the rate of
nonlinear steepening is sufficiently rapid, that is if the wave steepens more quickly
than it can be damped, the long wave evolves into a packet of solitary waves. This
process generally occurs in the presence of some existing background large-scale wave
motion. This scenario is often found in very long lakes where the period of the seiche,
T0, is likely to be much greater than the duration of most wind events (e.g. Farmer
1978).

To demonstrate the influence of the background seiche on the evolution of a
depression of the thermocline we allow a triangular disturbance to propagate into
a periodically varying background described by a linear wave of amplitude N0 and
wavelength 2L:

N(x, t) = N0 cos
(πx
L

)
cos
(π
L
c0t
)
,

U1(x, t) = −N0c0

h1

sin
(πx
L

)
sin
(π
L
c0t
)
,

U2(x, t) =
N0c0

h2

sin
(πx
L

)
sin
(π
L
c0t
)
.

 (5.1)

Since we later make direct comparisons of the evolution predicted by the modified
KdV equation (3.10) derived here with laboratory experiments, it is important to
include in the model dissipative effects arising from laminar boundary layers along
the surface of the tank. To this end we employ the extended KdV equation (Keulegan
1948; Miles 1976) applicable to a tank with rigid upper and lower surfaces

ζt + C(x, t)ζx + n(x, t)ζ + α(x, t)ζζx + β(x, t)ζxxx

=
C1/2

4π

√
ν

2

h1 + h2 + 4h1h2/b

h1h2

∫ ∞
−∞
|k|1/2(−1 + i sgn k)ζ̂(k, t) eikxdk, (5.2)

where b is the width of the tank, ν is the kinematic viscosity of the fluid and ζ̂(k, t) is
the Fourier transform with respect to the propagation distance x.

Figure 2 shows the effect of changing the amplitude and phase of the background
wave (note that the plot shows a wave of elevation propagating on a thin lower layer).
The peak of the triangular initial condition in figures 2(a) and 2(b) coincides with the
crest of the background wave at t = 0, so that the disturbance initially evolves on the
front face of the background wave. The amplitude of the background wave is 20% of
the amplitude of the initial condition in figure 2(a) and 10% of the amplitude of the
initial condition in 2(b). Figure 2(c) illustrates the homogeneous case in which there
is no background wave and in figures 2(d) and 2(e) the phase of the seiche is reversed
so that the peak of the initial condition coincides with the trough of the background
wave at t = 0.
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Figure 2. Effect of changing the amplitude and the phase of the background seiche on the evolution
of a long-wave packet. Seiche wave amplitudes at x = 0 are noted on the respective panels. Each
panel contains the spatial structure of the packet at the times t = 0, 50, 100, 150 s. All simulations
have h2/H = 0.2, ∆ρ/ρ2 = 0.02 and L = 6 m.

In the cases where the initial condition coincides with the crest of the background
wave (figures 2a and 2b) the integrand of (3.13) is initially positive and the amplitudes
of the evolving solitary waves increase. The rate of change of energy can be calculated
from (3.13) and is plotted in figure 3. In these two cases, however, the solitary waves
propagate at a greater speed than c0, gaining on the background wave, so that they
eventually move into the trough of the long wave. When this occurs the sign of the
integrand in (3.13) changes and the energy of the waves decreases. This happens
first to the leading soliton, which is reduced in amplitude and speed, and then to
the following waves as they also move into the trough. In figures 2(d) and 2(e) the
disturbance begins in the trough of the long wave and so the integrand of (3.13)
is negative. Although the disturbance steepens, it does so more slowly than in the
absence of a varying background and the amplitudes of the evolving solitary waves
are reduced. However, these evolving solitons still propagate at speeds greater than c0

and move through the background wave so that the energy integral would eventually
become positive whereupon they would increase in amplitude. One observes that the
peak wave amplitude, the amplitude distribution in the packet, and the position of the
front of the packet are all influenced quite significantly by the presence and strength
of the seiche.

In summary, as a packet of solitary waves moves through a strong space–time-
varying background field it will either gain or lose energy depending on the phase of
the background field. These energy fluxes result in increases and decreases in wave
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Figure 3. Rates of change of the energy as calculated using equation (3.13)
for the simulations shown in figure 2.

amplitude and speed that significantly change the character and appearance of the
individual waves and of the wave packet.

In order to provide an estimate of the expected number of solitary waves emerging
from an initial non-equilibrium state of the form investigated here, the direct scattering
portion of the inverse scattering transform (IST) for the KdV equation (cf. Ablowitz
& Segur 1981) was solved for a triangular-shaped initial condition. The results are
presented in Appendix B.† The IST solution for the chosen initial condition for the
results presented in figure 2 predicts the appearance of five solitons. This is consistent
with the evolution shown in figure 2(c) when no seiche field is present.

Case 2: Application to the evolution of a tilted interface in a closed basin
We next consider the situation when wind blows over the surface of a narrow lake

for sufficient time to tilt the thermocline over the length of the lake. This occurs when
the duration of the wind event exceeds T0/4 (Spigel & Imberger 1980). This initial
condition and its idealization for the purposes of the model, are shown schematically
in figure 4. This is the initial condition for the classical internal seiche (eg. Mortimer
1952) and was the initial condition considered by Horn et al. (2001) in their study of
the degeneration of basin-scale internal waves in lakes.

The relaxation of the initial thermocline tilt in a closed basin necessarily involves
wave propagation along both the rightward and leftward families of characteristics.
Hence, the description of this relaxation process via a single KdV equation which
models waves propagating along only a single characteristic (assumed to the right)
requires some explanation. First, we hypothesize that the initial condition can be
split into two parts: one giving rise to a propagating packet of long waves and

† Appendix B is available from the Journal of Fluid Mechanics editorial office, Cambridge, and
is posted on the web site http://www.cwr.uwa.edu.au/∼horn/papers/space-time.html.
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Figure 4. Schematic diagram of the KdV model for the extended laboratory domain. The displace-
ment of the tilted interface is partitioned between a background seiche and an initial condition for
evolution of a long-wave packet.

the other to a standing wave field. Now, the portioning of the initial state between
these components is quite arbitrary. However, the IST analysis presented in Appendix
B shows that the number of solitons emerging from an initial condition having
adjoining segments of positive and negative volumetric displacement is only slightly
affected by the presence of the negative part. This suggests that one might view the
positive part as contributing to the evolving wave packet and the negative part to the
seiche. Of course, the net volumetric displacement in a closed basin is identically zero
and, for this reason, we choose to split the initial condition evenly between the two
fields. Second, we neglect the interactions between the two families of characteristics
occurring on a fast time scale. Instead we reflect the closed basin of length L about
an end (the right-hand end for a right-hand KdV equation), forming a basin of length
2L, and consider a semi-infinite periodic extension of the reflected basin of length 2L.
We conjecture that this repetitive extension of the basin domain onto the semi-infinite
line (x > 0) with 2L periodicity should provide a reasonable first approximation of
the evolving wave field in the closed basin of interest. The advantage of the model
proposed here is that it affords a rapid calculation tool for exploring parametric
effects in closed basins. We comment that one can add a spatially varying (periodic
with period 2L) dissipative term in the model to simulate effects of shoaling and
reflection at an endwall, but we do not pursue such extensions here.

To test the applicability of the extended KdV model, we compare its results with
data from one of a series of laboratory experiments carried out by Horn et al. (2001).
The experimental techniques and results are described in more detail in that work
but will be briefly summarized below.

The laboratory experiments were conducted in a clear acrylic tank 6 m long, 29 cm
deep and 30 cm wide with an axis of rotation approximately through the tank centre
to allow the interface to be initially tilted. The tank was filled with a two-layer
stratification (h2/H = 0.2), the upper layer being fresh and the lower layer saline
(ρ ≈ 1020 kg m−3). The tank was then rotated through a small angle (0.5◦ for this
experiment) to its initial position. The experiment begins at t = 0 when the tank is
suddenly returned to a horizontal position and baroclinic pressure gradients drive a
flow from right to left below the pycnocline and from left to right above it. The ensuing
flow was recorded on video and still photographs and by ultra-sonic wavegauges. The
experimental set-up and the positions of the two wavegauges are shown in figure 5.
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Figure 5. Schematic of the laboratory model. Ultrasonic wavegauges are located at the positions
marked A, B, and C. The shaded regions in (b) and (c) show the density structure immediately
before and after an experiment commences.

In this experiment (and in most of the experiments conducted by Horn et al. 2001),
the initial standing wave generated by the tilted interface steepened and evolved
into a packet of solitary waves. Not all of the energy of the initial condition was
transferred to the solitary waves. Some energy remained in a residual larger-scale
wave that heaved the interface, on which the solitary wave packet propagated, up
and down. For the purposes of the model, we take the residual large-scale internal
wave to be the prescribed, strong, space–time varying background through which the
solitary wave packet evolves and propagates. Note that the present model does not
provide any rational basis for partitioning the energy resident in an initial, large-scale,
non-equilibrium state between an evolving packet of long waves with length scale
small compared to L and a residual standing wave. We therefore postulate ab initio
that a given fraction of this energy will flow directly into a standing wave which
extends throughout the semi-infinite domain X > 0. The remaining fraction of the
energy in the initial state will evolve into a long-wave packet propagating along
the right-running characteristic (i.e. directed toward increasing X). The slope of this
characteristic curve varies in space and time as specified by the fixed standing wave,
just as illustrated schematically in figure 1. The initial condition for the extended
KdV equation is composed of the residual isopycnal displacement obtained from
the difference between the initial thermocline slope and the standing wave. After a
small number of simulations it was found that to match the laboratory results, the
initial energy should be partitioned equally between the background condition and
the evolving soliary wave packet.

To compare the interface displacements predicted by the model (represented by
(5.1) and (5.2)) with those measured by the ultrasonic wavegauges, it is necessary to
introduce a number of virtual wavegauge positions in the very long model domain
by unfolding the tank along the domain. To create a time series equivalent to the
laboratory record the displacements from each of these virtual wavegauges are then
summed. Figure 6 shows the model and laboratory time series for a simulation in
which the amplitude of the initial disturbance was partitioned equally between the
background seiche and the initial condition for the extended KdV equation. The model
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Figure 6. Time series of the interfacial displacements predicted by the KdV model and measured
by the wavegauges at positions B and C are compared. The initial thermocline displacement was
partitioned in such a way that 50% of the initial amplitude was assigned to the seiche mode and
remaining displacement was assigned to the initial condition for the KdV model.

time series includes some high-frequency components introduced by the artificial step
in the initial condition at x = L. However, these soon leave the domain after
which the model interface displacements generally compare well with the laboratory
observations. Although small variations in the arrival time of the packet front, the
number of waves in the packet, and the amplitude distribution exist between the
laboratory measurements and the simulation, further improvement of the numerical
method, and especially the idealization of the initial conditions, would be expected to
improve the simulation. From a practical standpoint, the key element is the splitting
of the energy resident in the ‘initial field’ between the seiche field and the wave packet.
We have not engaged in any systematic study of this effect to optimize the comparison
between the model simulations and laboratory results. This partitioning of the energy
between the two fields is likely to vary depending on the initial non-equilibrium slope
of the interface and, perhaps, with the basin length. Nevertheless, there are some
obvious influences of the seiche field on packet evolution that are captured quite well
by the model.

5.2. Evolution in a basin with variable depth

We consider in this section the evolution of a long-wave packet in the presence of both
space–time variations arising from a seiche and spatial inhomogeneity arising from a
variable basin depth. In contrast with the previous section, the two terms proportional
to h′2(x) appearing in the expression for the index of refraction n(x, t) given by (4.5)
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are now non-zero. As such, the low frequency of the seiche field alternately reinforces
and relaxes the effect of variable depth, or vice versa depending on the initial phase
relationship between the seiche and the initial condition for the evolving wave packet.
Stated another way, the characteristic exhibited in figure 1 now oscillates about a
curved mean position following the evolution of the packet, the mean curvature of
the characteristic being determined by the variable basin depth.

The results presented here all correspond to a particular theoretical modification
of the laboratory configuration shown in figure 5. The upper layer has a depth of
5.8 cm and the lower layer depth varies linearly from 23.2 cm at the left-hand end
of the tank to 9.2 cm at the right-hand end. The initial condition, composed of a
triangular distortion of the interface with peak amplitude 1.16 cm extending over 3 m
(i.e. one-half of the tank length), was always released from the left end of the tank.
The peak amplitude ratio for the initial condition is ζ0/h1 = 0.2, and the lower-layer
depths vary from h2/h1 = 4 at the left-hand end to h2/h1 = 1.59 at the shallow end
on the right. We specifically avoid the situation where the leading-order part of the
coeffiecient α of the nonlinear term (cf. (4.6)) passes through zero (i.e. a situation where
the wave packet encounters the critical depth during its traverse of the basin). We
expect that the presence of the background seiche field might play a very influential
role in the transmission of a long wave packet through the critical depth, but we
choose to relegate that to a separate study.

The seiche field imposed in the simulation presented here corresponds to the lowest
mode defined by the physical optics approximation (cf. Bender & Orszag 1978) for a
linear, standing wave in the variable-depth basin. The analytical form for this field,
the results of which are needed to define the coefficient functions given in (4.3), (4.5),
(4.6) and (4.7), is presented in Appendix C.† For convenience and illustrative purposes
only, we choose the peak amplitude of the seiche field at the left-hand end of the
basin to have the same value as the triangular initial condition at the same point.
In this sense the energy partitioning between the seiche and wave packet fields is
(approximately) equal. The phase of the seiche field relative to the initial condition
for the packet, however, is allowed to vary.

Simulations of the KdV equation (3.10) emulating the evolution in a basin of
linearly varying depth and length L were conducted by employing a computational
domain consisting of a periodic continuation of the double basin obtained by means of
a symmetric extension of the true basin about the position x = L. Hence, the simulated
basin corresponds to one with periodically varying inhomogeneity, consisting both of
a seiche field and a triangular topographic variation, with spatial period 2L.

We first exhibit results corresponding to time series recorded by virtual wavegauges
located in the positions shown in figure 5 when boundary layer dissipation effects are
neglected. These time series are shown in figure 7 for three different initial conditions.
Each column corresponds to time records from a specific gauge, varying from x = L/4
on the right, x = L/2 in the centre, and x = 3L/4 on the left. The centre row shows
the evolution in the absence of any background seiche. The top row (a) reveals the
evolution when the seiche is out of phase with the initial condition while the bottom
row (c) shows corresponding records when the seiche is in phase with the initial
condition. The influence of the seiche on long-wave packet evolution in the basin
is quite profound. Both the amplitudes and the number of waves appearing in the
resulting packet increase as one compares corresponding time series moving from the

† Appendix C is available from the Journal of Fluid Mechanics editorial office, Cambridge, and
is posted on the website http://www.cwr.uwa.edu.au/∼horn/papers/space-time.html.
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Figure 7. Each column contains time series predicted by the KdV model at wavegauge positions
A, B, and C. Each row corresponds to the evolution resulting from the same initial condition, but
with a different seiche condition. Row (a) Seiche out of phase with initial condition; (b) no seiche;
(c) seiche in phase with initial condition.

top to the bottom rows. Results for identical initial conditions, but including boundary
layer dissipation effects, are shown in figure 8. The energetics is clearly affected, but
the qualitative differences arising from the seiche effect are still pronounced.

To illustrate the spatial structure of the packet evolving from the same set of initial
conditions used for the simulations shown in figures 7 and 8, we present spatial
records at evenly spaced time intervals in figure 9 for evolution in the absence of
dissipation. Figure 9(a) displays the packet evolution when the seiche is out of phase
with the initial condition while the seiche is in phase with the initial condition in
figure 9(c). Figure 9(b) shows evolution at identical time intervals in the absence of
any seiche. The effect of variable topography is clearly evident in figure 9(c), especially
the lowest panel where the lead wave is decelerating and diminishing in amplitude
while the separation between the second and third wave is enlarged because of their
(approximate) position bridging the point of maximum depth. The different gradients
of the sloping ‘flat’ portions between the leading three waves in the second-to-last
panel of figure 9(c) is probably due to the local phase of the seiche. For purposes of
comparison, the dissipative equivalent of figure 9(c) is shown in figure 10. Dissipation
in this basin is clearly dominant after propagation over several basin lengths. The
contrasting packet characteristics are strongly influenced by the presence and phase of
the background seiche. It is apparent in this case of a thin upper layer considered here
that, when the interfacial shear associated with the seiche is such that the lower-layer
velocity is in the direction of the packet motion, the packet extracts energy from
the background and grows. When the phase is reversed, the packet loses energy and
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Figure 8. Same as figure 7 except that dissipative effects are included.

appears to contain a larger number of smaller waves (compare figures 9a and 9b).
The present model is clearly deficient in regard to this coupling in that it precludes
any energetics of the seiche field. Nevertheless, the influence of a space–time-varying
background on the propagative characteristics of a long wave packet are captured
and shown to be significant.

6. Summary
We have derived an extended KdV equation that describes the evolution of in-

terfacial long waves in the presence of a strong, space–time varying background. In
such a system the long-wave phase speed and the trajectory of the linear charac-
teristic for local wave evolution vary slowly in space and time in accordance with
the background state. The nonlinear and dispersive coefficients of the extended KdV
equation are also variable and an additional term, n(X,T )ζ(1), is introduced, where
the index of refraction n(X,T ) contains space–time gradients of the background state.
Approximate expressions are derived for the coefficients of the evolution equation for
the case where the background state is composed of a moderate-amplitude ultra-long
wave. Provision has been made for a spatially varying lower depth so that some
topographic effects can also be included.

Implications of the extended KdV model were examined in the context of two
specific applications in a basin of uniform depth: the evolution of an initial disturbance
of the interface in the presence of a moderate-amplitude ultra-long wave in a very
long basin, and the evolution of a tilted interface in a closed basin. It has been shown
that the amplitude and the phase of the background ultra-long wave determines both
the rate of steepening of an initial disturbance and the amplitude of the emerging
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solitary waves. When an initial disturbance propagates on the crest of the background
ultra-long wave (where the disturbance is a wave of elevation propagating on a thin
lower layer) there is a transfer of energy from the background ultra-long wave to
the evolving solitons. Conversely, when a local disturbance propagates in the trough
of the background ultra-long wave it loses energy and reduces in amplitude. The
extended KdV model was used to simulate a laboratory experiment in which an
initial basin-scale standing wave steepens and evolves into a packet of solitary waves.
The model shows that, if the energy of the initial basin-scale wave is partitioned so
that half is retained as a background basin-scale wave and half is used as the initial
condition, the model reproduces the main features of the evolving wave field.

The extended KdV model is expected to be a useful tool for the investigation of
the evolution of weakly nonlinear waves in natural systems where the background
state is rarely uniform or steady. For example, in lakes, solitary waves propagate in
the presence of seiching motions; this was the motivation for the closed basin case
considered above. Similarly, in fjords, solitary waves generated by tidal flow over a sill
propagate into the fjord in the presence of strong tidal currents. When considering the
shoaling and breaking of solitary waves, and the consequent dissipation and mixing,
it is of significant importance to know the characteristics of the incident waves and
of the wave packet. The extended KdV model reveals some important effects that a
strongly varying background has on the characteristics of these waves.

However, this model only allows a one-way coupling in which, although the
background field influences the evolution of a local disturbance, the local evolution
does not modify the background field. A truly coupled system is necessary to capture
the energetics of the full wave field, but the model developed here reveals the important
role of the phase of the seiche field on local evolution and provides a simplified basis
for exploring some of these subtle effects. In practical contexts where the amplitudes
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of individual wave components stimulate benthic mixing, particle transport, etc., these
apparent subtle effects may have very important consequences.
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Appendix A. The extended KdV equation
Continuing the analysis to O(ε) in the asymptotic expansion of the dependent

variables given in (3.1) leads to the following equation for the evolution of the
leading-order displacement ζ(1)(θ,X, T ) in the presence of a base state which is
inhomogeneous in space and time:
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[
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2
]
ζ

(1)
θθθ = 0. (A 1)

Observe that both c(X,T ) and C(X,T ) appear in the coefficients, and that the
coefficient of the ζ(1) term (enclosed by the brackets {· · ·}) contains space–time
gradients of the background state represented by C(X,T ), U1,2(X,T ), N(X,T ), and
h2(X). The coefficients of the dispersive and nonlinear terms also vary on the evolution
scales (X,T ). When the background is spatially uniform and steady and the lower-
layer depth is constant, the coefficient of ζ(1) vanishes identically and the familiar
constant-coefficient KdV equation is recovered.
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